How many loops are on this surface?

Mark Bell

Mathematics Institute, University of Warwick
m.c.bell@warwick.ac.uk

Examples

In each case: how many curves are there? How did you figure this out?

You can create your own examples by choosing numbers that obey the even triangle inequality.

Naïve Algorithm

while there is an unmarked arc do Get an unmarked arc repeat

Mark the current arc
Follow along to next arc
until back at the starting point end while

Uses

We can surger S along Γ to obtain a new surface S_{Γ}. If \mathcal{T} is a triangulation of S then it can also be surgered, giving a triangulation \mathcal{T}_{Γ} of S_{Γ}.
Lemma (Bell). We can compute \mathcal{T}_{Γ} from \mathcal{T} in $O(\log (|\underline{v}(\Gamma)|))$ time and space.

This is a very useful technique as it allows us to construct arguments based on induction on the genus of S. For example:

Theorem (Bell [2]). Suppose that H is a finite set of homeomorphisms of S. There is a computable constant K such that for each $h \in\langle H\rangle$ there is a collection of curves Γ fixed by h (up to isotopy) such that the homeomorphism induced by h on S_{Γ} fixes no curves and

The number of components of Γ is the number of times the outer loop is repeated. However, this involves crossing every arc in every triangle.
Hence, this requires $O(|\underline{v}|)$ time and space.

References

[1] Ian Agol, Joel Hass and William Thurston: The computational complexity of knot genus and spanning area, Transactions of the American Mathematical Society, (2006)
[2] Mark C. Bell: An algorithm for deciding reducibility ArXiv e-prints: 1403.2997 (2014)
[3] Jeff Erickson and Amir Nayyeri: Tracing compressed curves in triangulated surfaces, Discrete \& Computational Geometry. (2013)
[4] Marcus Schaefer, Eric Sedgwick and Daniel Štefankovič: Algorithms for normal curves and surfaces, Proceedings of 8th International Conference on Computing and Combinatorics (2002)

